ACADEMIC SESSION: 2024-25 (Winter) | Discipline: Electrical engineering | Semester : 5th | Name of the Teaching Faculty : Kiran Kumar Bhoi | |------------------------------------|--------------------|--| | ubject : Energy | No. of days / week | Semester From date: | | conversion-2 | class allotted | 01/07/2024 to 08/11/2024 | | No. | | Nos. of Weeks per semester : 15 | | Veek | Class Day | Theory Topics | | 1 ^{5T} | 1 st | Types of alternator and their constructional features | | | 2 nd | Basic working principle of alternator and the relation between speed and frequency. | | | 3 _{rd} | Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor). | | | 4 th | Explain harmonics, its causes and impact on winding factor. | | 2 ND | 1 st | E.M.F equation of alternator. (Solve numerical problems). | | | 2 nd | Explain Armature reaction and its effect on emf at different power factor of load. | | | 3 rd | The vector diagram of loaded alternator. | | | 4 th | (Solve numerical problems) vector diagram | | 3 RD | 1 st | Testing of alternator -Open circuit test, Short circuit test | | | 2 nd | Testing of alternator (Solve numerical problems) | | | 3 _{rd} | Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems) | | | 4 th | Parallel operation of alternator using synchro-scope and dark & bright lamp method. | | 4 TH | 1 st | Explain distribution of load by parallel connected alternators | | | 2 nd | Constructional feature of Synchronous Motor. | | | 3 rd | Principles of operation, concept of load angle | | | 4 th | Derive torque, power developed. | | 5 TH | 1 st | | | | 2 nd | Effect of varying load with constant excitation. | | | 3rd | Effect of varying excitation with constant load. | | | 4 th | Power angle characteristics of cylindrical rotor motor. Explain effect of excitation on Armature current and power factor. | | | Process of the second | | |------------------|------------------------|---| | | | | | | 1 st | Hunting in Synchronous Motor. | | 6 ^{тн} | 2 nd | Function of Damper Bars in synchronous motor and generator. | | | 3 rd | Describe method of starting of Synchronous motor. | | | 4 th | State application of synchronous motor. | | | 1 st | Production of rotating magnetic field. | | 7 TH | 2 nd | Constructional feature of Squirrel cage and Slip ring induction motors. | | | 3 rd | Working principles of operation of 3-phase Induction motor | | | 4 th | Define slip speed, slip and establish the relation of slip with rotor quantities. | | | 1 st | Derive expression for torque during starting and running conditions and derive conditions for maximum torque | | | 2 nd | (solve numerical problems) | | 8 TH | 3 _{rd} | Torque-slip characteristics. | | | 4 th | Derive relation between full load torque and starting torque etc | | | 1 st | (solve numerical problems) | | 9 ^{тн} | 2 nd | Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. | | | 3 rd | solve numerical problems | | | 4 th | Methods of starting and different types of starters used for three phase Induction motor part 1 | | 10 TH | 1 st | Methods of starting and different types of starters used for three phase Induction motor part 2 | | | 2 nd | Explain speed control by Voltage Control, Rotor resistance control, Pole | | | 3 rd | Changing, frequency control methods. | | | 4 th | Plugging as applicable to three phase induction motor Describe different types of motor enclosures. | | 11 TH | 1 st | Explain principle of Induction Generator and state its applications. | |------------------|-------------------|---| | | 2 nd | Explain Ferrari's principle. | | | 3 rd | Explain double revolving field theory and Cross-field theory to analyze starting torque of 1 -phase induction motor. | | | 4 th | Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors, Split phase motor, Capacitor Start motor.0 | | 12 th | 1 st | Capacitor start, capacitor run motor, Permanent capacitor type motor, Shaded pole motor. | | | 2 nd | Explain the method to change the direction of rotation of above motors. | | | 3rd | Construction, working principle, running characteristic and application of single phase series motor. | | | 4 th | Construction, working principle and application of Universal motors. | | 13 th | 1 st | Working principle of Repulsion start Motor, Repulsion start Induction run motor | | | 2 nd | Working principle of Repulsion Induction motor. | | | , 3 _{rq} | Principle of Stepper motor. | | | 4 th | Classification of Stepper motor | | 14 th | 1 st | Principle of variable reluctant stepper motor. | | | 2 nd | Principle of Permanent magnet stepper motor. | | | 3 rd | Principle of hybrid stepper motor. | | | 4 th | Applications of Stepper motor. | | 15 th | 1 st | Explain Grouping of winding, Advantages. | | | 2 nd | Explain parallel operation of the three phase transformers. | | | 3 rd | Explain tap changer (On/Off load tap changing) | | | , 4 th | Maintenance Schedule of Power Transformers. | Prepared by Kiran Kumar Bhoi Lect(electrical Engg) Head of the Department (electrical Engg) GP Sonepur Academic co-ordinator GP Sonepur